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Abstract

In recent years, information systems have become the social infrastructure, so that
their security must be improved urgently. In this paper, the results of the sur-
vey of virtualization technologies, operating system verification technologies, and
access control technologies are introduced, in association with the design require-
ments of the reference monitor introduced in the Anderson report. Furthermore,
the prospects and challenges for each of technologies are shown.

1 Introduction

In recent years, information systems have become the social infrastructure, so that

improving their security has been an important issue to the public. Besides each of

security incidents has much more impact on our social life than before, the number

of security incident is increasing every year because of the complexity of information

systems for their wide application and the explosive growth of the number of nodes

connected to the Internet.

Since it is necessary for enhancing information security to take drastic measures con-

cerning technologies, managements, legislations, and ethics, large numbers of researches

are conducted throughout the world. Especially focusing on technologies, a wide variety

of researches is carried out for cryptography, intrusion detection, authentication, foren-

sics, and so forth, on the assumption that their working basis is safe and sound. The

basis is what is called an operating system in brief and various security enhancements

running on it are completely useless if it is vulnerable and unsafe. Additionally, if the

operating system is safe, it is an urgent issue what type of security enhancements should

be provided from it to upper layers.

Therefore, there exist many researches and implementations for a long time, about im-

proving security of operating systems themselves, and security enhancements to provide

from operating systems as safety area, including the TCSEC (Trusted Computer System

Evaluation Criteria) from the US-DoD, Trusted Solaris, SELinux, and so on. However,
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many researches are on-going today because the former researches are now the essential

elements to reduce a lot of threats but insufficient to support our healthy information

society.

In this paper, some recent researches are introduced letting operating systems be the

most basic software to guarantee information security, especially focusing on virtual-

ization technologies of operating systems, verification technologies for operating system

programs, and access control technologies. The organization of this paper is as follows.

First, in the chapter 2, classification policy about security researches in this paper are

showed, and the relation between three technologies mentioned above are explained in

association with the design requirements of the reference monitor in TCSEC. Then, some

researches about each technologies and remaining issues are presented in the chapter 3,

4, and 5. Finally, the chapter 6 summarizes this paper as conclusion.

2 Security Research for Operating Systems

Trusted Computing Base (TCB) is the basic component to construct trusted com-

puter systems, and the concept is defined in the TCSEC (Trusted Computer System

Evaluation Criteria)[1] in 1985, involving some components such as a reference valida-

tion mechanism that is called reference monitor, a formal security policy model which is

enforce by reference monitor, and so on. The Anderson report[2] listed the three design

requirements that must be met by a reference validation mechanism; i) the reference val-

idation mechanism must be tamper proof, ii) the reference validation mechanism must

always be invoked, iii) the reference validation mechanism must be small enough to be

subject to analysis and tests, the completeness of which can be assured.

Operating systems are met the requirement ii) by nature because they are the under-

most layer of software stacks of information systems. Therefore, many researches have

been taken place so far to enhance information security making a good use of operating

systems as a reference monitor. Additionally, operating systems researches from the

other perspective have been carried out for meeting the requirements caused by evolu-

tions of computer hardware and social requests because operating systems have a role

of the execution environment for application programs in its origin. Especially in recent

years, various researches are on-going all over the world to meet the newly requirements

from embedded systems, mobile systems, and cloud computing.

In this paper, those researches are surveyed in terms of information security, namely,

this paper classifies recent researches into following three areas, relating to attacks

against operating systems themselves and against programs running on operating sys-

tems. In brief, all the researches in this paper are explained as countermeasures for these

attacks; operating system verification technologies for the former attacks, access control

technologies for the latter attacks, and virtualization technologies for the both attacks.

1. Virtualization Technology
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Virtualization technologies have been studied for a long time to utilize hardware

resources effectively and wide spreading globally as a basic infrastructure for cloud

computing of late. Virtualization technologies are related to all the requirements

of reference monitor.

2. OS Verification Technology

OS verification technologies are a kind of formal verification proving the properties

of OS code, like safeness, reliability, validity, and so on. Virtualization technolo-

gies and OS verification technologies are related to the requirement (iii) , since

a reference validation mechanism must be analyzed, tested, and ensured to be

complete.

3. Access Control Technology

Access control technologies are provided from a reference monitor and ensuring

the safeness of whole information system, related to the requirement (ii). Access

control technologies rely on the assumption of reference monitor’s safeness and

managing security of upper layer programs.

3 Virtualization Technology

In recent years, significant improvements in hardware performance have made research

and development of OS virtualization technologies an active area of research. OS vir-

tualization technologies have also been applied as foundational technologies for cloud

computing, and strengthening security in such applications is an important issue. This

section describes virtualization technology research over the past few years, organized

according to four aspects: virtual machine observation via hypervisors, virtualization of

main memory devices, virtualization of I/O devices, and verification of the completeness

of a virtual machine. Future issues in these areas are also discussed.

As to the reasoning for dividing things into these four categories, first, proper imple-

mentation of information security measures requires that events occurring within the

information system are viewable by the defensive side, but not the attacking side. In

view of the active research being applied to this end, hypervisor monitoring of the vir-

tual machine are taken up in the first section. Next, as the current objects of hypervisor

monitoring are predominantly memory and I/O devices, this section is also organized

according to those topics. Finally, exclusion of software that would allow an attacker to

perform monitoring requires that all execution sequences, including boot processes, be

subjected to completeness verification. Related research assumes that hardware support

is taking place in numerous locations, and this subject is treated in its own section.

3.1 Technologies for Virtual Machine Monitoring by Hypervisors

A hypervisor is situated between the virtual machine and hardware, and performs
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resource management and scheduling for the virtual machine. One of the benefits gained

by using a hypervisor is that on the operation side multiple virtual machines can be

managed simultaneously. This allows resources to be assigned or reclaimed dynamically,

according to the operational situation. A second benefit is a strengthening of virtual

machine security, in that use of a hypervisor tightens access control over general-purpose

OSs, which may include vulnerabilities due to increased complexity. Hypervisors also

allow the construction of observation and analysis devices that cannot be detected by

malware. Representative examples of hypervisor implementation are given in Xen[3],

KVM[4], and VMware[5].

The concept of using hypervisors to allow monitoring, observation, defense, and iso-

lation of virtual machines is known as Virtual Machine Inspection (VMI) [6]. VMI is

considered an effective means of detecting and preventing unauthorized access, due pre-

dominantly to three characteristics: the virtual machine is unable to alter code on the

hypervisor side, the hypervisor is able to monitor all aspects of the virtual machine, and

code issued from the virtual machine can be captured. Many papers relevant to this

study have been published regarding virtual machine observation.

Methods of VMI observation include both active and passive methods. In active

methods, the status of the virtual machine is externally obtained at fixed intervals.

Volatility [7] is an example of research in this area, and uses such extracted information

to obtain and analyze a snapshot of memory. Passive methods are methods in which

events within the virtual machine, such as resource access, trigger extraction of related

information. Representative examples of such research are Lares[8], Xenprobes[9], and

VMScope[10].

There are two approaches to implementing both active and passive methods: in-the-

box and out-of-the-box methods. There have been numerous discussions of the possibil-

ity of attacker detection of defender-side observational devices and of the potential for

elimination of semantic gaps2[11], as well as the tradeoff costs of implementing those. At

present it is considered difficult for observational devices to be detected from within the

virtual machine, so out-of-the-box methods are generally employed. There is one signifi-

cant limitation to such methods, however, in that the amount of observable information

is less than with in-the-box methods.

3.2 Virtualization of Main Memory Devices

Handling of main memory devices, paging mechanisms in particular, is an important

issue when implementing virtualization technologies. The physical addresses used by

the virtual machine are artificial addresses virtualized by the hypervisor. Coordinating

access to the true physical addresses therefore generally requires twice the number of

2Semantic gaps refer to an inability to reconstruct semantic information regarding VM-internal re-
source access from information received by the hypervisor. In other words, eliminating the semantic gap
would mean making it possible for the hypervisor to reconstruct semantics related to resource access on
the virtual machine.
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address conversions as in the non-virtualized case. This doubled paging, peculiar to

virtualization technologies, can be performed either in hardware or in software.

A representative example of virtualizing main memory devices in software is the

Shadow Paging technique of Xen. Shadow Paging catches main memory page faults

to virtualize main memory accesses by the virtual machine. A mechanism called the

Shadow Page Table is used to convert between the physical addresses recognized by the

virtual machine and the physical addresses on the actual machine. There is ongoing

research regarding how to use Shadow Page Table modifications to detect rootkits and

other malware that uses kernel extensions.

For example Panorama [13] proposes a method for detecting contamination; it uses

Google Desktop[14] as a case study. Ether[15] also proposes a method for detecting

malware using hardware-based virtualization assistance features. Similarly, Ether[16]

proposes a method for detecting malware operating externally from within the guest

OS; this method is through acquisition of RDTSC data.

From the attacker side of things, in 2006 SubVirt[17] and Blue Pill[18] were proposed

as ways of taking advantage of the powerful isolation methods a hypervisor should pro-

vide; this would create a rootkit that cannot be detected from the guest OS. Similarly,

Ristenpart et al. [19] showed that it was possible to perform a side-channel attack on

Amazon EC2 between virtual machines operating on the same physical machine. Chen

et al. [20] performed a comprehensive investigation and classification of methods by

which analysis by a hypervisor on the defender side could detect malware.

Representative examples of virtualizing main memory structures in hardware are In-

tel VT-d and AMD-V. In these, virtualization technologies can utilize hardware-based

memory management, decreasing the load on the hypervisor resulting from address con-

versions and implementation. In Intel VT-d this is performed using the Extended Page

Table, and an example of using this to detect unauthorized kernel extensions is HUKO

[21]. Under HUKO the table that is shared in Shadow Paging is physically isolated and

shared by each guest OS, which allows for eliminating the overhead of guest OS paging

while still strengthening access control. SIM [12] is another example of using isolation

to protect the address space used by the virtualization technology, but while SIM uses

Shadow Paging, HUKO uses hardware-supported paging to reduce the load of VMM

transitions and TLB load.

3.3 I/O Unit Virtualization

When security is tightened through measures such as access control from the hypervi-

sor to the VM and integrity verification, it is necessary to implement I/O virtualization

in addition to virtualization of the main storage devices, as introduced in the previous

section. As in the case of the main storage, I/O virtualization can be implemented in

either software or hardware.

In software I/O virtualization, I/O requests from device drivers are captured and
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interrupted. Split kernel drivers in Xen are a representative example, where memory

shared between the VM and the hypervisor is allocated and I/O is virtualized using an

event channel. Also, as a practical application of this technique, in XenAccess[22] the

split kernel driver blktap is used to modify VM events and to reduce the load on the

entire system. Furthermore, sHype[23] can enforce security policies when generating and

deleting VM snapshots and generating virtual interrupts.

Another implementation is BitVisor[24], which is a hypervisor using the so-called

para-pass-through architecture. In comparison to other hypervisors, BitVisor captures

only those I/O requests from the VMt that are related to access control and encryption

and enforces security through intermediate processing of these requests. Using this

architecture, the hypervisor has to process only control I/O and data I/O, and it is

unnecessary to implement protection and scheduling between VMs. BitVisor consists of

about 20000 lines of code (20 KLOC) in its core section, and para-pass-through drivers

are about 1/10th of ordinary drivers in terms of lines of code. Furthermore, from the

perspective of the CIA triad of information security, in contrast to other hypervisors,

which concentrate on ensuring confidentiality, BitVisor also includes effective functions

for ensuring integrity in addition to confidentiality.

IOMMU supporting direct access to the hardware for VMs has been proposed for hard-

ware I/O virtualization. IOMMU implements address remapping in hardware during di-

rect memory access (DMA), allowing VMs to directly manipulate addresses of physical

devices. In relation to this, Intel VT-d and TXT (Trusted Execution Technology)[25] can

stop malicious code from being transferred via DMA. TXT intervenes into the process

of address remapping during DMA and rejects DMA to the protected memory region.

Furthermore, Intel VT-I and Intel VT-d can completely separate I/O spaces, including

memory access of the guest OS, thus ensuring confidentiality.

3.4 VM Integrity Verification

With the increased incidence of attacks on VMs, research on integrity verification

of structural elements of VMs has grown. For physical machines, devices such as TPM

(Trusted Platform Module) are used for integrity verification, and a virtualized version of

TPM (vTPM[26]) has been proposed for structural verification of multiple VMs running

on top of a physical machine.

vTPM implements a split device driver in both the VM and the VM monitor in order

to capture I/O requests from the VM to the TPM. There are two types of TPM-based

trusted boot, namely SRTM (Static Root of Trust Management) and DRTM (Dynamic

Root of Trust Management). SRTM is used in research by Sailer et al. [27] as well as

in Bitlocker[28]. In their 2004 study, Sailer et al. proposed a method for maintaining a

chain of trust all the way from the bootloader through the kernel to the application. In

this way, the integrity of code and data loaded into the OS is automatically verified by

TPM. Furthermore, in 2007, Kauer presented an attack method for SRTM and proposed
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Open Secure Loader (OSLO), which uses the AMD SKINIT technology[29].

A more advanced integrity verification technique is HIMA[30], which is capable of

verifying the consistency of TOCTTOU (time of check to time of use). In HIMA, priority

is given to design objectives such as robust isolation and protection against TOCTTOU

attacks. Toward that end, it uses techniques such as dynamic monitoring and memory

protection for guest OSs.

HyperSentry[31] is another research project that focuses on integrity verification for

the hypervisor. It uses out-of-channel dedicated monitoring structures and communica-

tion paths that cannot be detected by the verification target for verifying the integrity

of the hypervisor itself. Specifically, a monitoring structure is established within the hy-

pervisor, which communicates with a remote verifier via an SMI (System Management

Interrupt) handler and IPMI (Intelligent Platform Management Interface). In this way,

sufficient isolation is maintained from the hypervisor, and the integrity of the entire

system, including the hypervisor, can be verified.

3.5 Prospects and Challenges

Problems related to OS virtualization technology to be addressed in future research

include the application of all research results introduced above, as well as the further

strengthening of the various security features related to virtualization. The gradual

upscaling and increasing complexity of general-purpose OSs increases the risk of vul-

nerabilities. Since general-purpose OSs are expected to find various applications in the

future, including in embedded products, the construction and isolation of environments

implementing security features must be performed in the hypervisor, which is closer to

the hardware.

For example, systems such as HUKO, which detect and stop incorrect kernel exten-

sions, are under active development at various institutions for the purpose of strengthen-

ing security features related to access control. Hypervisors for the detection and analysis

of malware are also being investigated, and methods for their implementation are cur-

rently sought after. Research is also being conducted on the detection of malicious

operations inside VMs using hypervisors by eliminating the semantic gap[32].

4 OS Verification Technology

The OS kernel is the software base of computational systems, and its reliability and

stability have a strong effect on the security of the entire system. For this reason,

research on direct OS kernel verification has been conducted for many years. In this

section, three verification methods are introduced; theorem provers, source code model

checking and safe programming languages. These verification approaches are compared

in Table 1. In this section, problems for future research on OS kernel verification are

also presented.
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表 1: Comparison of OS verification approaches

Verification method Verification performance Verification cost

Theorem provers (Section 4.1) Excellent Moderate
Source code model checking (Section 4.2) Good Good
Safe programming languages (Section 4.3) Moderate Excellent

4.1 Verification using Theorem Prover

A theorem prover is a program that takes the proof of a given theorem as input and

determines its correctness [33, 34]. First, the safety and reliability of the OS kernel are

expressed as a theorem, which is subsequently proven, and the reliability and stability

of the OS kernel are examined and guaranteed by verifying the correctness of this proof

by using a theorem prover. Specifically, for example, the OS kernel behavior can be

expressed in terms of state transitions of an abstract state machine. By proving that

this machine satisfies certain conditions (such as not allowing illegal memory opera-

tions, unexpected halting or infinite loops), the OS kernel properties can be verified and

guaranteed.

One advantage of theorem provers is that they can verify any arbitrary properties that

the assistant can take as input. However, one disadvantage is that the verification cost

is exceedingly high since the proof must be constructed manually.

Kit [35] was the first OS kernel whose program was directly verified. Kit is an ex-

tremely small kernel consisting of approximately 300 lines of machine code (in machine

language for an abstract von Neumann machine). Inside the kernel, task isolation is

proven using the Boyer-Moore theorem prover [36]. Specifically, the abstract specifica-

tions and machine-language implementation that the kernel should satisfy are defined

using the Boyer-Moore logic, and the Boyer-Moore theorem prover is used to prove that

the isolation of each task is guaranteed by the abstract specifications as well as that the

implementation of the abstract specifications is correct.

An example of a somewhat larger OS is seL4 [37], which is a kernel implemented

in about 8700 lines of C code and about 600 lines of assembler code. This imple-

mentation realizes a formal specification, which has been guaranteed and verified using

Isabelle/HOL [33] (it should be noted that since seL4 is a microkernel, it does not in-

clude complex parts such as memory management, which are accordingly not verified).

The actual verification procedure was as follows. First, the properties and behavior that

the kernel must exhibit are defined in terms of an abstract specification (for example,

interfaces and behavior of system calls). Next, the executable specification is defined as

an abstract implementation of the abstract specification. Particularly, a program imple-

menting the abstract specification is written using a subset of the Haskell programming

language [38], and the executable specification is automatically generated from its source

code. The execution specification thus obtained is proven to correspond precisely to the
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abstract specification. Next, the execution specification is implemented using a subset

of the C programming language. The semantics of that subset is formally defined in

Isabelle/HOL, and the C-language implementation can be handled more or less directly

by Isabelle/HOL. Finally, the C-language implementation is proven to correspond pre-

cisely to the execution specification. This proof required a total of about 22 man-years

to complete.

4.2 Verification Based on Source Code Model Checking

Source code model checking [39, 40] applies model checking techniques [41] directly

to program source code. More specifically, a model is extracted from source code given

as input, and the program properties are verified and guaranteed by performing an

exhaustive search of the states assumed by the program.

The merit of OS kernel verification using source code model checking is that it hardly

involves any manual intervention, in contrast to the theorem prover method. However,

one disadvantage is that model checking often requires considerable computational re-

sources (CPU time and memory).

SDV (Static Driver Verifier) [42] is a framework for verification of Windows device

drivers. Specifically, the source code model checker SLAM [43] is used to verify whether

device drivers obey specifications denoted using the SLIC specification language (mainly

the use of the kernel API). This is not intended for verifying the OS kernel itself. SDV is

included into the Windows Driver Kit developed by Microsoft, and is already at a level

where it can be used in deployment environments.

Furthermore, although not relying on direct source code model checking, a similar

method is used in an attempt for OS kernel verification of the Nucleus part of Verve [44].

Verve is an OS with verified and guaranteed type safety. The Nucleus part of Verve is

responsible mainly for memory management (garbage collection), thread management

(stack management) and hardware management (such as interrupt processing and de-

vice drivers). Nucleus was verified using the following procedure. First, the assembly

code implementation of Nucleus and the specifications met by Nucleus were represented

using the Boogie [45] program verifier and passed as input to Boogie. Next, Boogie

constructed verification conditions showing whether Nucleus behaved according to the

specifications. The Z3 [46] SMT solver was used to verify whether these conditions were

satisfied. Thus, the verification of Nucleus was essentially automatic. Nucleus consists

of about 4500 lines of Boogie code (corresponding to about 1400 lines of assembly code).

However, about 7% of that corresponds to manual annotations inserted as hints for the

complete automation of the verification procedure. Furthermore, the representation of

the assembly code implementation and specification in Boogie required about 9 man-

months, and the automatic verification of Nucleus by Boogie required 272 s on a machine

with a 2.4-GHz Intel Core2 CPU and 4 GB of RAM.
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4.3 Verification using Safe Programming Languages

In this paper, the term “safe programming language” refers to a programming language

which uses strict type checking to guarantee and verify that flaws such as illegal memory

operations and code execution do not arise at program runtime. Representing an OS

using a safe programming language allows strict type checking to guarantee and verify

that the OS does not perform illegal memory operations or exhibit other undesired

behavior. During program analysis, strict type checking classifies variables and functions

according to their type (types represent integers and memory references, data and code,

etc.), and checks if the program behaves according to those types at runtime. In this

way, programs that have passed strict type checking are guaranteed against flaws such

as illegal memory operations or code execution.

The merit of representing an OS using a safe programming language is that OS ver-

ification can be performed automatically through type checking in the programming

language. Furthermore, compared to source code model verification, the computational

resources (CPU time and memory) required for verification are smaller. However, a

disadvantage of this method is that verification is limited to basic properties. Another

disadvantage is that OS representation using a safe programming language imposes a

great load on OS developers.

SPIN [47] is an OS microkernel supporting safe extensibility. In traditional microker-

nels, kernel safety is guaranteed by executing extensions with privileges different from

those of the kernel itself. However, this has been associated with an overhead on inter-

extension and extension-kernel communication. In contrast, SPIN kernel extensions are

represented using the safe programming language Modula-3 [48], which guarantees safety

even if they are executed with kernel privileges, thus reducing the communication over-

head. Specifically, tasks requiring low latency, such as virtual memory management and

network communication, have been implemented as kernel extensions using Modula-3.

In SPIN, verification does not target the kernel itself. Furthermore, the kernel safety can

be compromised by bugs in the Modula-3 compiler. Therefore, the Modula-3 compiler

should be included into the trusted computing base (TCB) of the system.

Singularity [49] is an OS represented using assembly language and the type-safe pro-

gramming languages C# [50] and Sing#, which is an extension of C#. Strictly speaking,

Sing# is an extension of Spec#, which in turn extends C# by explicitly representing

preconditions and postconditions for object methods. Sing# extends Spec# further by

introducing inter-process communication channels. In Singularity, OS components are

implemented as processes, and inter-component communication is conducted via the

abovementioned channels. Specifically, Singularity consists of about 280000 lines of C#

code and 90000 lines of Sing# code (or architecture-dependent assembly code), and type

safety as well as inter-component independence are guaranteed for the parts represented

in C# or Sing#. However, the parts responsible for memory and thread management

are outside the verification scope. Since programs written in C# or Sing# are converted

into type-safe assembly programs (a typed assembly language [51]) and type safety can
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be examined at the level of the assembly programs, in contrast to SPIN, it is unnecessary

to include the C# and Sing# compilers into the system TCB.

TOS [52] is an OS kernel represented in the typed assembly language TALK [53, 54],

which has been extended for the purpose of OS kernel representation. TALK allows

for OS kernel representation and type verification, which has been difficult to perform

using traditional typed assembly languages, by using type systems for handling variable-

length arrays for memory representation, integer constraints for calculation of addresses

as well as safe strong updates for memory (memory operations changing the type of the

memory region). TOS is a limited-capability OS kernel consisting of about 3000 lines

of TALK code. Its characteristic feature is that it uses TALK to represent the parts

responsible for memory and thread management, which have not been targeted directly

in OS verification research using other safe programming languages. This allows for

memory safety to be verified and guaranteed using TALK type verification.

4.4 Prospects and Challenges

As mentioned above, direct OS verification has already been realized at the level

of research, and future work will involve the application of verification techniques to

more large-scale and practical OS s. It is conceivable that the several verification tech-

niques introduced in the preceding section can be combined for that purpose. In fact,

in Verve [44], the parts other than Nucleus are represented separately in C# (in other

words, in a safe programming language), allowing for type safety of the entire OS to be

guaranteed.

Furthermore, a more academic and technical problem is how to verify the OS safety

in the increasingly popular multi-core CPU environments, which allow for multiple pro-

grams to be executed simultaneously [54]. Traditional research on OS verification usually

assumes a single-CPU computing environment. Specifically, it is necessary to consider

race conditions and problems with the memory coherence model [55, 56, 57] arising when

multiple programs operate at the same time on shared memory.

5 Access Control Technology

Access control is one of the most basic and elemental techniques for maintaining in-

formation security, and it is also related to the preservation of confidentiality, integrity

and availability. For this reason, as mentioned in Section 2, access control functionality

is provided on top of the OS’s TCB. Information security has been researched contin-

ually for close to half a century, and the first results of such research can be found

in TCSEC[1]. Furthermore, in recent years, a highly abstracted access control system

has been standardized in ISO/IEC10181-3[58]. In the following sections, security policy

models, security policy description languages, security policy verification techniques, and

access control mechanisms are introduced as the main structural elements of OS-based
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access control functions. And research trends are also shown in all of these areas, as well

as problems for future research.

5.1 Security Policy Models

Information security requires different levels of confidentiality, integrity and avail-

ability depending on the use, and therefore various security policy models have been

researched in the past to reflect this. The main types of policies target confidentiality

preservation, integrity preservation and a combination of the two. Representative secu-

rity policy models of each type include the Bell-LaPadula [59] (confidentiality), the Biba

Integrity [60] and Clark-Wilson [61] (integrity) and the Chinese Wall [62] and role-based

access control (RBAC) [63, 64] (combined confidentiality and integrity). Representative

examples of recent research on security policy models are presented below.

The RBAC model [63, 64] is a role-based security policy model. Since access control

within an information system can be easily matched to the responsibilities of people and

groups in the real world, it is intuitively understandable and, if managed correctly, can

be used to realize access control following the principle of minimal privilege. RBAC has

been adopted in SELinux and various OSs, such as Solaris. Results of recent research

on the RBAC model include its formal definition and an extension of the basic model

[65] as well as its standardization and adoption into the ANSI standard[66]. In addi-

tion, administrative RBAC (ARBAC)[67, 68] has been developed and an RBAC model

analysis[69] focusing on management problems has been conducted regarding the ques-

tion of how and by whom the various relations in the RBAC system should be set. A

method for the formal verification of the security features of RBAC implementations on

actual OSs has also been proposed[70].

The task-based authorization control (TBAC) model [71] is a security policy model

where multiple authorizations are grouped into an authorization procedure (authoriza-

tion step, AS), and the authorization approval is determined by specifying the access

subject, the accessed object, the details of the intended operation as well as the AS name

and the process name within the AS. In TBAC, access rights assigned to subjects in each

AS are activated or deactivated successively depending on the context. For example,

fine-grained access rights can be specified in accordance with the transaction processing

status. In this way, TBAC allows for an unobstructed view of the entire policy by struc-

turing the authorization procedure in an abstract manner and allowing it to be used

repeatedly as a subroutine.

5.2 Security Policy Description Languages

Security policy description languages are intended for representation of security poli-

cies and can be regarded as languages that describe access control specifications. In

recent years, security policy description languages have been researched with the appli-

cation of knowledge on mathematical logic, including description logic, with emphasis
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on problems including descriptive power with regard to the delegation, restriction and

revocation of rights, grammatical clarity and readability for humans, semantic brevity

and clarity, efficiency of the rights approval procedure and extensibility of the language.

Below, representative examples of research on security policy description languages are

introduced.

SecPAL[72] is a security policy description language for flexible description of access

rights delegation between areas under decentralized management, under the assumption

that the security policy of a relatively large-scale system is constructed as a module

for each management area. SecPAL is a high-level security policy description language

based on a constraint programming language, where the requirements for rights approval

are met upon a successful query with respect to a cluster of nodes. SecPAL’s grammar is

close to that of a natural language, and meaning is constructed based on three inference

rules. Through support for negative queries, recursive predicates, specifying the number

of times that rights can be delegated and various other constraints, the language can

represent a vast number of security policy models in a generic way. SecPAL remains the

subject of active research as it has been implemented as a security policy description

language for the cloud OS Windows Azure.

Lithium[73] is a security policy description language which can correctly infer logi-

cal negation in a formal manner. Lithium is a high-level language based on first-order

predicate logic that supports inferences including negation by restricting recursive repre-

sentation. Lithium is useful, for example, when merging multiple policies and analyzing

the resulting access control specifications since it can provide formal verification that

access has not been authorized. However, it also suffers from the problem that the

delegation of access rights, which is required in many security policy models, cannot

be represented simply. Since Lithium can be used without knowledge of its grammar

and first-order predicate logic, a frontend supporting policy description using ordinary

English is being developed[74].

5.3 Security Policy Verification

Security policy verification is a technique for checking whether the security policy

obeys given access control specifications. Information systems are becoming increasingly

large and complex, bringing about a dramatic increase in the amount of descriptions of

security policies using languages such as those introduced in the preceding section, and in

many cases the realized access policy specifications become incomprehensible to humans.

To address this problem, a verification method allowing for described security policies

to be easily analyzed is sought after and actively researched. Below, representative

examples of research on security policy verification are introduced.

For ARBAC models, RBAC-PAT[75] is capable of verifying parameters such as the

reachability and availability of information flow when a given role is taken as a point

of origin as well as the compartmentalization and weakest point of an information sys-
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tem. RBAC-PAT simplifies the analysis of policies in ARBAC models where multiple

administrators can change the access rights at any time. Specifically, it can verify the

reachability and availability of a given role for a user, the relation between inter-role

connotation and the smallest set. RBAC-PAT can also discover unnecessary roles and

verify the information flow between objects.

PALMS[76] can verify the total information flow depending on the multi-level security

(MLS) policy under analysis by defining a formal specification of the policy. Further-

more, it can automatically verify the conformance between two MLS policies. PALMS is

implemented as a tool based on Prolog and can verify whether a given MLS policy obeys

a ∗policy or simple security condition, as well as whether the MSL policy of an appli-

cation is compatible with the MLS policy of the host OS. PALMS targets MLS policies

only, but since in many cases actual information systems use multiple security policy

models simultaneously, the question of how to enable verification in cases where MLS

policies are compatible with other security policy models is currently being researched.

5.4 Access Control Mechanisms

Access control mechanisms are schemes for enforcing individual access control rules

(described in a security policy description language) on information systems. Specific

implementations such as the ACL and capability formats have been developed[77]. While

the ACL format has been used for a long time, the capability format is still being

researched since it has the merit of realizing access control based on the principle of

minimal privilege. Furthermore, the integration of compulsory access control structures

into existing OSs is being researched with an emphasis on compatibility with security

policies. Below, representative examples of research on access control mechanisms are

shown.

seL4[37] is a research-purpose OS based on an L4 microkernel with extended security.

It implements a combination of the take-grant model [78] and the capability format,

and imposes access control on all kernel objects. L4 kernel objects are threads, the ad-

dress space, interprocess communication and untyped memory, which represents unused

physical memory, where access restrictions for these objects are imposed and removed

using the capability format. Another example of research on the capability format is

Capsicum[79], which is an OS for research purposes that extends the standard UNIX

API. It uses the capability format for easy and fine-grained sandboxing of applications

and processes. Research is also under way on a design concept of an OS where Cap-

sicum can easily separate individual applications rather than controlling the separation

between the OS and the application layer in a unified manner.

The FLASK security architecture (FLSA)[80] consists of an object manager that en-

forces the execution of decisions based on a security policy, and a security server that

provides decisions about granting and refusing access in accordance to a given security

policy. These two structures communicate following a predefined protocol and serve as a
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reference monitor for the entire FLSA. One of the main features of FLSA is its ability to

realize various security policy models in a flexible manner. FLSA has been implemented

as SELinux in Linux and as SEBSD . The TrustedBSD MAC framework[81] has been

proposed as similar enforced access control structure, which has been implemented in

FreeBSD and Darwin.

5.5 Prospects and Challenges

Research on access control techniques has been conducted for a long time, and the

fundamental theory has already been established. At the same time, extensions and

applications of that theory following the changes in demand for information security are

constantly sought after. The research introduced in the preceding section is progressing

as information systems continue to form the base of society.

Future research should focus on access control specifications for cloud environments

based on virtualization and for embedded systems such as smartphones, as well as the

application of the above-mentioned achievements to environments with different assump-

tions required for realizing these specifications. Security policy models and description

languages oriented toward distributed systems as well as distributed access control mech-

anisms for enforcing these models are particularly sought after, and relevant research

is already being conducted at various institutions. For example, there is research on

extending the application scope of FLSA from access control mechanisms for objects

captured at the OS layer of standalone systems to mechanisms for objects captured at

the application layer and in other system objects[82, 83].

6 Conclusion

This paper describes a result of survey of security research for operating systems and

shows the prospects and challenges of this research area. According with the require-

ments of reference monitor, each of researches is classified into three research areas;

virtualization technologies, os verification technologies, and access control technologies.

Then, outlines and research examples are detailed respectively as well as problems.

Specifically, VM monitoring by hypervisor, virtualization of main memory devices, I/O

unit virtualization, and VM integrity verification are explained for virtualization tech-

nologies. And verification using theorem prover, source code model checking, and safe

programming language are explained for OS verification technologies. Besides, secu-

rity policy model, security policy description language, security policy verification, and

access control mechanism are explained for access control technologies.

For the healthy development of our information society of the future, almost all the

applications need security support by robust and dependable OS essentially, though

many challenges are left to be solved for each of the elemental technologies, as introduced

in this paper. It is believed that basic principles of OS have not changed for nearly half
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a century, because social requests for OS have not changed over the years. However, at

the near future, they will vary greatly than ever according with the rapid spread of new

computing environment, and therefore, the remaining challenges of various technologies

discussed in this paper is expected to be resolved and utilized as a matter of course in

the real world.
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