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Abstract

Flexible attribute-based encryption, which is a variant of ciphertext-policy attribute-
base encryption, allows one to loosen a decryption policy underlying a given cipher-
text, if one knows some system-wide trapdoor information, without knowing its
underlying plaintext message. We give new security definition for flexible attribute-
based encryption. Our new definition is stronger and more natural in the sense
that it allows adversaries to issue the challenge ciphertext to the loosening oracle.
Second, we construct a concrete construction of flexible attribute-based encryption
using composite-order pairing map. We prove its security (in our new definition) in
the random oracle model against static adversaries employing the dual encryption
method.

Keywords: Attribute-based encryption, Re-encryption, Loosening operation.

1 Introduction

Attribute-based encryption (ABE) was first proposed by Sahai and Waters [22], in

which, a message m is encrypted to a ciphertext c under some predicate f , and a user

with credential X can decrypt the ciphertext c if and only if the predicate f is satisfied

by the user’s credential X: f(X) = 1. Goyal, Pandey, Sahai, and Waters [7] proposed

two complementary forms of ABE: Key-Policy ABE and Ciphertext-Policy ABE. In this

paper, we focus on Ciphertext-Policy ABE, in which attributes are used to describe

users’ credentials and formulas over these attributes are attached to the ciphertext by

the encrypting party.

The first construction of Ciphertext-Policy ABE was given by Bethencourt, Sahai, and

Waters [5]. Its security is proved under the generic bilinear group model. Waters [25]

gives an ABE construction which can be proven secure in the standard model against

selective adversaries. Lewko, Okamoto, Sahai, Takashima, and Waters [16] and Okamoto

and Takashima [20] give fully secure constructions of ABE in the standard model.

Many systems are proposed to secure storage services by using such ABE constructions

[21, 23, 3, 2, 11, 24, 12, 9]. In those systems, users can encrypt their documents by

describing decryption policies using some set of attributes, without knowing explicit

†Graduate School of Information Security, Institute of Information Security

情報セキュリティ総合科学 第 6巻
132



Seiko Arita： FLEXIBLE ATTRIBUTE-BASED ENCRYPTION, REVISITED

identities of entities that satisfy those policies. This would enable fine access control

over documents in storage without heavy load of administrations of key managements.

Ordinal ABE schemes assume static policies. If a document is once encrypted to some

ciphertext under a policy f , there is no means to loosen the underlying policy f of the

ciphertext without decrypting it, of course. However, in real systems, decryption policies

are not always static: Yesterday’s secret is not necessarily secret of today. Arita [1]

proposed a notion of flexible attribute-based encryption (fABE), motivated by problems

of static decryption policies. Flexible attribute-based encryption, which is a variant

of ciphertext-policy ABE, allows one to loosen a decryption policy underlying a given

ciphertext, if one knows some system-wide trapdoor information, without knowing its

underlying plaintext message.

Our contributions. First, we reconsider the security condition required for such flex-

ible ABE. In the security definition of indistinguishability under loosening operation

(IND-LSO) for fABE in [1], the challenge ciphertext is required to be hiding its plain-

text even if adversaries can use loosen-oracle services. (An adversary can issue some

ciphertext cf and policy difference ∆f to loosen-oracle that replies to the adversary a

loosened ciphertext cor(f,∆f) that can be decrypted under the loosened policy or(f,∆f)).

The problem of the definition is that an adversary is banned to issue the challenge ci-

phertext itself to the loosen-oracle. This is somewhat artificial and problematic since the

security of challenge ciphertext should be protected as long as the adversary does not

know any secret key that satisfies the loosened underlying policy of the challenge cipher-

text. We will give a new, more natural definition of IND-LSO that allows adversaries to

issue the challenge ciphertext to the loosening oracles.

Second, we construct a concrete construction of fABE that is secure under our new

stronger security definition, based on the scheme of Waters[25]. Although the scheme in

[1] is proved only in the generic bilinear group model, we can prove the security of our

construction depending only on the random oracle model against static adversaries. For

the sake we use the dual encryption approach [18].

Related works. The concept of the flexible attribute-based encryption is similar to

the attribute-based proxy re-encryption [8, 14, 10, 15, 19, 6, 13]. In the attribute-base

proxy re-encryption, one can generate re-encryption key rkf1→f2 , and by using the key

rkf1→f2 , a ciphertext cf1 for policy f1 can be re-encrypted into a ciphertext cf2 for

policy f2. To generate such re-encryption key rkf1→f2 , the secret key skf1 for policy f1

is required. On a while, in our flexible ABE, all ciphertexts can be “loosened” using the

single (system-wide) trapdoor information (which is independent of individual policies).

The ABE scheme of [6] is more similar to flexible attribute-based encryption in a

sense. A user in the scheme of [6] can provide the proxy with a single transformation

key that allows the proxy to translate any ABE ciphertext into an ElGamal-style ci-

phertext, which the user is able to decrypt under the user’s secret key (with one simple

exponentiation).
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2 Preliminaries

Our construction will use a pairing map e : G × G → GT over bilinear groups of

composite order N = p1p2. We denote its parameter generation algorithm as G = (N =

p1p2, G = Gp1Gp2 , GT = GT,p1GT,p2 , e) ← GenG(1k). Here, Gi denotes the subgroup

of the source group G with prime order pi and GT,i denotes the subgroup of the target

group GT with prime order pi (i = 1, 2).

2.1 Assumptions

Regarding the composite-order pairing map, we use the following three well-known

assumptions ([18]), with some adaptation to our situation.

2.1.1 The decisional BDH assumption

Given a composite-order parameter G = (N = p1p2, G = Gp1Gp2 , GT =

GT,p1GT,p2 , e) ← GenG(1k), the Bilinear Diffie-Hellman (BDH) problem over G asks

to find e(g, g)abc given g, ga, gb, gc, where g
$← Gp1 and a, b, c

$← ZN .

The decisional BDH assumption over G means that the (even) decisional version of the

BDH problem is difficult. That is, for any PPT algorithm A, its advantage AdvdBDH
A

def
=

|Pr[A(g, ga, gb, gc, T0) = 1 | T0 = e(g, g)abc] − Pr[A(g, ga, gb, gc, T1) = 1 | T1
$← GT,p1 ]|

must be negligible in k.

2.1.2 The decisional parallel BDHE assumption

Given a composite-order parameter G = (N = p1p2, G = Gp1Gp2 , GT =

GT,p1GT,p2 , e) ← GenG(1k), the q-parallel Bilinear Diffie-Hellman Exponent (BDHE)

problem asks to find e(g2, g2)
a(q+1)s

given

y = (p1, g1, p2, g2, g
s
2, g

a
2 , . . . , g

aq

2 , ga
q+2

2 , . . . , ga
2q

2 ,

(g
sbj
2 , g

a/bj
2 , . . . , g

aq/bj
2 , g

aq+2/bj
2 , . . . , g

a2q/bj
2 )j∈[q],

(g
asbk/bj
2 , . . . , g

aqsbk/bj
2 )j,k∈[q],j ̸=k),

where g1
$← Gp1 , g2

$← Gp2 and a, s, b1, . . . , bq
$← Zp2 .

The decisional parallel BDHE assumption means that the (even) decisional version

of parallel BDHE problem is difficult. I.e., for any PPT algorithm A, its advantage

Advq−dpBDH
A

def
= |Pr[A(y, T0) = 1 | T0 = e(g2, g2)

a(q+1)s
]− Pr[A(y, T1) = 1 | T1

$← GT,p2 |
must be negligible in k.
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2.1.3 The subgroup assumption

Given a composite order parameter G = (N = p1p2, G,GT , e) ← GenG(1k), the

subgroup problem between Gp1 and Gp2 asks to distinguish the two distributions

(g1, X1X2, T0) and (g1, X1X2, T1) where g1 ← Gp1 , X1X2 ← G = Gp1Gp2 , T0 ← Gp1

and T1 ← G = Gp1Gp2 .

The subgroup assumption between Gp1 and Gp2 means that the subgroup problem

between Gp1 and Gp2 is difficult. That is, for any PPT algorithm A, its advantage

Advsubgr
A

def
= |Pr[A(g1, X1X2, T0) = 1] − Pr[A(g1, X1X2, T1) = 1]| must be negligible in

k.

3 Flexible Attribute-Based Encryption

A flexible attribute-based encryption (fABE) is a tuple of five PPT algorithms: Setup,

Enc, Keygen, Dec and Loosen.

• (par,mk, lk)← Setup(1k).

Given a security parameter 1k, Setup generates a public parameter par, a master

secret mk and a trapdoor information lk for loosening operation.

• cf ← Enc(par,m, f).

Enc encrypts a given message m into a ciphertext cf under a given decryption

policy f . The policy is supposed to be explicit in the ciphertext cf .

• das ← Keygen(par,mk, as).

Keygen generates a secret key das for a given attribute set as, using the master

secret mk. The attribute set as is supposed to be explicit in the secret key das.

• m← Dec(par, cf , das).

Dec decrypts a given ciphertext cf with a given secret key das and outputs a

resulting message m. The output m may be an error symbol ⊥ when the given

ciphertext cf is not valid.

• c′or(f,∆f) ← Loosen(par, lk, cf ,∆f).

Using the trapdoor information lk, Loosen re-encrypts a given ciphertext cf under

some policy f to a new “loosened” ciphertext c′or(f,∆f), which can be decrypted

by the more loosened condition or(f,∆f).

Correctness. For any valid setup information (par,mk, lk) ← Setup(1k) and for any

valid ciphertext cf ← Enc(par, f,m), it must be that Dec(par, cf , das) = m if the secret

key das is generated by Keygen for some attribute set as that satisfies the decryption

policy f underlying cf .
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If the ciphertext cf is loosened by a policy ∆f to a new ciphertext cor(f,∆f) as

cor(f,∆f) ← Loosen(par, lk, cf ,∆f), then we must have Dec(par, cor(f,∆f), das′) = m if

the corresponding attribute set as′ satisfies the appended policy ∆f (or f).

3.1 Security of Flexible Attribute-Based Encryption

To define security of flexible attribute-based encryption fABE =

(Setup,Enc,Keygen,Dec, Loosen), we describe games using the framework of code-

based games [4]. A game has an Initialize procedure, procedures to respond to

adversary oracle queries, and a Finalize procedure. A game GameA is executed

with an adversary A as follows. First, Initialize executes, and its outputs are the

inputs to A. Then A executes, its oracle queries being answered by the corresponding

procedures of GameA. When A terminates, its output becomes the input to the

Finalize procedure. The output of the latter is called the output of the game, and we

let y ← GameA denote the event that this game output takes value y.

3.1.1 Indistinguishability under Loosening Operation (IND-LSO)

Let A be an arbitrary PPT adversary against fABE. In our game Gameind−lso
A,fABE (k),

procedures Initialize and Finalize are defined as follows.

procedure Initialize:

b
$← {0, 1}

(par,mk, lk)← Setup(1k)

return par.

procedure Finalize (b′):

return b′
?
= b.

Procedures Keygen, LR and Loosen are used in Gameind−lso
A,fABE (k) to answer oracles

queries from A:

procedure Keygen (as):

assert(f∗(as) = false)

das ← Keygen(par,mk, as)

return das.

procedure LR (f∗,m0,m1):

assert(f∗(as) = false) for as’s submitted to Keygen-oracle.

cf∗ ← Enc(par, f∗,mb)

return cf∗ .

procedure Loosen (cf ,∆f):

If cf = cf∗ , then assert(or(f∗,∆f)(as) = false) for as’s submitted to Keygen-oracle.

cor(f,∆f) ← Loosen(par, lk, cf ,∆f)

If cf = cf∗ , then update cf∗ as cf∗ = cor(f,∆f).

return cor(f,∆f).

In the above, “assert(f∗(as) = false)” means that one must assert that the condition

f∗(as) = false holds if f∗ defined. Abort if does not hold, or else continue.

In the definition of IND-LSO in [1], adversaries cannot send the target ciphertext
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c∗ with any policy ∆f to the Loosen oracle. We admit it as long as the minimum

requirement is satisfied, i.e., or(f∗,∆f)(as) = false for as’s submitted to Keygen-

oracle.

Definition 1 A flexible attribute-based encryption fABE is said to be indistinguishable

under loosening operation (IND-LSO) if for an arbitrary PPT adversary A its advantage

Advind−lso
A,fABE (k) := |Pr[Gameind−lso

A,fABE (k) = 1]− 1/2| is a negligible function in k.

If adversaries A are constrained to output its challenge policy f∗ as well as its loosen-

ing’s ∆f1, . . . ,∆fm in advance before receiving par, we call such A selective adversaries.

A flexible attribute-based encryption fABE is said to be selectively indistinguishable un-

der loosening operation (sIND-LSO) if it is IND-LSO against all selective adversaries.

3.1.2 Indistinguishability under Loosening Key

In another type of game Gameind−lsk
A,fABE (k), following procedures are defined:

procedure Initialize:

b
$← {0, 1}

(par,mk, lk)← Setup(1k)

return (par, lk).

procedure Finalize (b′):

return b′
?
= b.

procedure LR (f∗,m0,m1):

cf∗ ← Enc(par, f∗,mb)

return cf∗ .

We note that Initialize returns a trapdoor information lk as well as a parameter par

and adversaries will know the trapdoor lk.

Definition 2 A flexible attribute-based encryption fABE is said to be indistinguishable

under loosening key (IND-LSK) if for an arbitrary PPT adversary A its advantage

Advind−lsk
A,fABE (k) := |Pr[Gameind−lsk

A,fABE (k) = 1]− 1/2| is negligible in k.

4 A Concrete Construction

4.1 Scheme

In the followings, ♯Leaf(f) denotes a number of leaf nodes of a given binary formula

f . (ρ,M) ← LSS(p, f) denotes a transformation which converts a Boolean formula f

into a linear secret sharing scheme defined by a share-generating matrix M over prime

p (with its corresponding secret-restoring coefficients (ωi)i) and an assignment function

ρ from rows of matrix M to the universe of attributes. For details of the conversion

we refer to [17]. Predicate IsDH(g, g1, g2, g3) means the tuple (g, g1, g2, g3) is a Diffie-

Hellman tuple, i.e., g3 = ga2 and g1 = ga for some a. For two vectors a = (a1, . . . , an)

and b = (b1, . . . , bn), a · b denotes their inner product: a · b =
∑

i=1,...,n aibi.

• Setup (1k, B(k)):
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– Generate a group parameter: (N = p1p2, G,GT , e)← GenG.

– Choose g, w1(= gδ1), w2(= gδ2)
$← Gp1 and α, a

$← ZN .

– For i = 1 to B choose γi
$← ZN and compute ui = gγi . Set γ = (γ1, . . . , γB).

– Choose two hash functions: F : {0, 1}∗ → {0, 1}B and G : {0, 1}∗ → ZN . Let

H(S) = u
F1(S)
1 u

F2(S)
2 . . . u

FB(S)
B = gγ·F (S) and I(S) = w1w

G(S)
2 = gδ1+G(S)δ2 .

– Choose a randomness extractor K : {0, 1}∗ → {0, 1}k.

– Choose a symmetric encryption (E,D).

– Return a public parameter pp = (N, g, ga, e(g, g)α, w1, w2, u1, u2, . . . , uB), a

master key mk = (pp, gα) and a loosening key lk = (pp, γ1, γ2, . . . , γB).

• Enc (par, f,M):

– Assert that ♯Leaf(f) ≤ B and compute (ρ,A)← LSS(f). (A’s size be l× n.)

– Choose v = (s, v2, . . . , vn)
$← Zn

N and do the following:

∗ Compute κ = K(e(g, g)αs), P = Eκ(M) and C = gs.

∗ For j = 1 to l, choose rj
$← ZN and compute Cj =

(ga)Aj ·vH(ρ(j))−rj , Dj = grj .

∗ For j = 1 to l, compute Ej = I(f, P, C, (Cj , Dj)j=1,...,l)
rj .

– Return ciphertext cf = (f, P, C, (Cj , Dj)j=1,...,l, (Ej)j=1,...,l).

• Keygen (mk, as):

– With t
$← ZN computeK = gαgat, L = gt and for i ∈ as computeKi = H(i)t.

– Return das = (as,K,L, (Ki)i∈as).

• Dec (par, cf = (f, P,C, (Cj , Dj)j=1,...,l, (Ej)j=1,...,l), das = (as,K,L, (Ki)i∈as):

– Assert that the attribute set as satisfies the policy f (if not return ⊥) and

compute (ρ,A)← LSS(f). (A’s size be l × n.)

– Compute (ωj)j=1,...,l satisfying
∑

ρ(j)∈as ωjAj = (1, 0, . . . , 0).

– Compute χ = e(C,K)/
∏

ρ(j)∈as(e(Cj , L) e(Dj ,Kρ(j)))
ωj and κ = K(χ).

– Return Dκ(P ).

• Loosen (par, lk = γ, cf = (f, P,C, (Cj , Dj)j=1,...,l, (Ej)j=1,...,l),∆f):

– Let f = or(f,∆f) and (ρ,A)← LSS(f). (the size of A be l × n.)

– Assert that ♯Leaf(f) ≤ B and for j = 1 to l assert that

DH(g, I(f, P, C, (Cj , Dj)j=1,...,l), Dj , Ej).

– Restore gas from (CjD
γ·F (ρ(j))
j = gaAj ·v)j=1,...,l.

– Choose y2, . . . , yl
$← ZN and compute gaλj = gaAj ·(s,y2,...,yl).
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– For j = 1 to l, choose rj
$← ZN and compute Cj = gaλjH(ρ(j))−rj , Dj = grj .

– For j = 1 to l, compute Ej = I(f, P,C, (Cj , Dj)j=1,...,l)
rj .

– Return the loosened ciphertext cf = (f, P, C, (Cj , Dj)j=1,...,l, (Ej)j=1,...,l).

Correctness It is direct to see that, if computed honestly, a ciphertext cf of a message

M will be decrypted to the original message M using the secret key das for attribute set

as satisfying the underlying policy f of cf .

The Loosen algorithm computes encodings gaλj of the original shares λj = Aj · v
included in the ciphertext cf by using the loosening trapdoor γ for any j = 1, . . . , l

as gaλj = CjD
γ·F (ρ(j))
j . Then it can restore the encoding gas of the secret as in a

multiplicative way from those encodings gaλj and then can compute new shares gaλj of

as in a multiplicative way as gaλj = gaAj ·(s,y2,...,yl). Thus, the resulting ciphertext cf

has quite the same distribution as ordinary ciphertexts directly produced by Enc with

respect to the loosened-policy f = or(f,∆f).

4.2 Security

Theorem 1 Under the subgroup assumption between Gp1 and Gp1Gp2, the decisional

parallel BDHE assumption on Gp1Gp2 and the assumption that the symmetric encryption

SKE = (E,D) is one-time CPA-secure, the proposed fAB-KEM scheme is selectively IND-

LSO in the random oracle model. More precisely, for any PPT adversary A against the

scheme in the IND-LSO game in the random oracle model with respect to the function

G(·), there exists algorithms B1, B2, B3 for the subgroup assumption between Gp1 and

Gp1Gp2, an algorithm B4 for the decisional parallel BDHE assumption in Gp1Gp2 and a

one-time CPA adversary B5 against SKE that satisfy

Advind−lso
A,fAB−KEM ≤ Advsubgr

B1
+Advsubgr

B2
+qloose·B·Advsubgr

B3
+Advg−dpBDH

B4
+Advcpa1

SKE,B5
+O(qlooseB/p2).

To prove Theorem 1 we employ the dual encryption method in the form of [18]. Ma-

jor difficulty in proving Theorem 1 is in the treatment of trapdoor information behind

the hash function H. Because we are using the trapdoor behind H as the loosening

key, we cannot use Gp1 components of the hash function H as the room for the simula-

tion in proof. Instead we change ciphertexts and secret keys into semi-functional ones

respectively and do the simulation by using Gp2 components of H.

4.2.1 Proof of Theorem 1

• Game0:

This is the original game Gameind−lso
A,fABE (k) between an adversary A and the chal-

lenger with respect to the proposed construction of fABE.
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• Game1:

This game differs from Game0 only in that the challenger now answers a “semi-

functional” ciphertext (instead of the normal ciphertext) in response to LR-query.

More precisely, (only) LR is re-written as LR1:

– procedure LR1 (f∗):

∗ assert(f∗(as) = false), assert(♯Leaf(f∗) ≤ B), (ρ,A) ← LSS(f∗) (A :

l × n)

∗ v = (s, v2, . . . , vn)
$← Zn

N , κ = K(e(g, g)αs), P = Eκ(Mb), C = gsgs2

∗ α′, a′, γ′, γ′1, . . . , γ
′
B, δ

′
1, δ

′
2

$← ZN (Define H ′(S) = g
γ′·F (S)
2 and I ′(S) =

g
δ′1+G(S)δ′2
2 )

∗ rj
$← ZN , Cj = (ga)Aj ·vH(ρ(j))−rj (ga

′
2 )Aj ·vH ′(ρ(j))−rj , Dj = grjg

rj
2 (j =

1, . . . , l)

∗ Ej = I(f∗, P, C, (Cj , Dj)j∈[l])
rjI ′(f∗, P, C, (Cj , Dj)j∈[l])

rj (j = 1, . . . , l).

∗ Return cf∗ = (f∗, P, C, (Cj , Dj)j=1,...,l, (Ej)j=1,...,l).

∗ (Remark) We note that s is randomly selected from ZN = Zp1 × Zp2 so

that, for example, two elements gs and gs2 are independently uniformly

distributed in Gp1 and Gp2 , respectively. Similar for pairs (gAjv, g
Ajv
2 ),

(grj , g
rj
2 ), and (gδi , gδi2 ).

Claim 1 Under the subgroup assumption between Gp1 and Gp1Gp2, the outputs of

Game0 and Game1 are indistinguishable. More precisely, for any adversary A

there exists a distinguisher B for the subgroup assumption that satisfies Advsubgr
B =

|Pr[Game0
A = 1]− Pr[GameA1 = 1]|.

Proof Given any adversary A in Game0 or Game1, we construct a following distin-

guisher B for the subgroup assumption between Gp1 and Gp1Gp2 :

• B (g1, T ): // T is either gs1 or gs1g
s
2 with s

$← ZN (Note that gs1 and gs2 are

independently uniformly distributed in Gp1 and Gp2 , respectively.)

– (Initialize) Choose α, a, γ1, . . . , γB, δ1, δ2
$← ZN , and set pp = (N, g =

g1, g
a
1 , e(g, g)

α, F,G, u1 = gγ1 , . . . , uB = gγB , w1 = gδ1 , w2 = gδ2), mk =

(pp, gα) and lk = (pp, γ1, . . . , γB). Invoke a copy of A on input pp.

– (Oracle simulation) Simulate Keygen-oracle and Loosen-oracle honestly us-

ing mk and lk, respectively. For LR-oracle, do as follows.

∗ Given a challenge query (f∗,M0,M1), choose b
$← {0, 1} and let (ρ,A)←

LSS(f∗). (A: l × n)

∗ Choose w
$← Zn

N with w1 = 1 and r̃j
$← ZN for j = 1 to l.

∗ Compute κ = K(e(g1, T )
α) and P = Eκ(Mb).
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∗ Set C = T and compute Cj = T aAj ·wT−r̃jγ·F (ρ(j)), Dj = T r̃j for j = 1 to

l and Ej = D
δ1+G(f∗,P,C,(Cj ,Dj))δ2
j for j = 1 to l.

∗ Return c∗f = (f∗, P, C, (Cj , Dj)j=1,...,l, (Ej)j=1,...,l) to A.

– (Output) Given the output b′ of A, output 1 if b = b′ or 0 otherwise.

Correctness of the simulation. It is obvious that the above simulated view of A by

B is the same as the corresponding view of A in Game0 or Game1, except that the

distributions of the challenge ciphertext c∗f .

When T = gs1, components of the simulated cf are distributed as:

• κ = K(e(g1, T )
α) = K(e(g1, g

s
1)

α), P = Eκ(Mb), C = gs1.

• Cj = (gs1)
aAj ·w(gs1)

−r̃jγ·F (ρ(j)) = (g1)
aAj ·sw(g

γ·F (ρ(j))
1 )−r̃js = (g1)

aAj ·v(g
γ·F (ρ(j))
1 )−rj

(Let v = sw and rj = r̃js, which are independently uniform in ZN ).

• Dj = (gs1)
r̃j = g

rj
1 .

• Ej = (g
rj
1 )δ1+G(f∗,P,C,(Cj ,Dj))δ2 = (g

δ1+G(f∗,P,C,(Cj ,Dj))δ2
1 )rj =

I(f∗, P, C, (Cj , Dj))
rj .

Thus, the distribution of c∗f is the same as the normal ciphertexts in Game0.

When T = gs1g
s
2, components of the simulated c∗f are distributed as:

• κ = K(e(g1, g
s
1g

s
2)

α) = K(e(g1, g
s
1)

α), P = Eκ(Mb), C = gs1g
s
2.

• Cj = (gs1g
s
2)

aAj ·w(gs1g
s
2)

−r̃jγ·F (ρ(j)) = (g1)
aAj ·sw(g2)

aAj ·sw(g
γ·F (ρ(j))
1 )−r̃js(g

γ·F (ρ(j))
2 )−r̃js

= (g1)
aAj ·v(g2)

aAj ·v(g
γ·F (ρ(j))
1 )−rj (g

γ·F (ρ(j))
2 )−rj .

• Dj = (gs1g
s
2)

r̃j = g
rj
1 g

rj
2 .

• Ej = (g
rj
1 g

rj
2 )δ1+G(f∗,P,C,(Cj ,Dj))δ2 = (g

δ1+G(f∗,P,C,(Cj ,Dj))δ2
1 )rj (g

δ1+G(f∗,P,C,(Cj ,Dj))δ2
2 )rj

= I(f∗, P, C, (Cj , Dj))
rjI ′(f∗, P, C, (Cj , Dj))

rj .

Thus, the distribution of c∗f is the same as the semi-functional ciphertexts in Game1.

The advantage. By the above observation we see that

Advsubgr
B = |Pr[B(g1, T ) = 1 | T = gs1]− Pr[B = (g1, T ) | T = gs1g

s
2]|

= |Pr[b′ = b | Game0]− Pr[b′ = b | Game1]|
= |Pr[GameA0 = 1]− Pr[GameA1 = 1]|.

2

• Game2:

This game differs from Game1 only in the following two points:
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– Keygen-oracle now answers “semi-functional” secret keys (instead of the

normal secret keys) in response to all of the Keygen-queries.

– The challenge ciphertext cf∗ is “more-semi-functional”.

More precisely, Keygen and LR1 are re-written as the following Keygen2 and

LR2, respectively:

– procedure Keygen2 (as):

∗ assert(f∗(as) = false)

∗ t
$← ZN .

∗ α′, a′, γ′, γ′1, . . . , γ
′
B, δ

′
1, δ

′
2

$← ZN (Define H ′(S) = g
γ′·F (S)
2 , I ′(S) =

g
δ′1+G(S)δ′2
2 )

∗ K = gαgatgα
′

2 ga
′t

2 , L = gtgt2, Ki = H(i)tH ′(i)t (i ∈ as)

∗ Return das = (as,K,L, (Ki)i∈as).

∗ (Remark) We note that t was randomly selected from ZN = Zp1×Zp2 so

that gt and gt2 are independently uniformly distributed in Gp1 and Gp2 ,

respectively.

– procedure LR2 (f∗):

∗ Only difference from LR1 is in method of computing κ:

κ = K(e(g, g)αse(g2, g2)
α′s)

– (Remark) The random strings α′, a′, γ′, γ′1, . . . , γ
′
B, δ

′
1, δ

′
2 are shared among

procedures Keygen2 and LR2.

Claim 2 Under the subgroup assumption between Gp1 and Gp1Gp2, the outputs of

Game1 and Game2 are indistinguishable. More precisely, for any adversary A

there exists a distinguisher B for the subgroup assumption that satisfies Advsubgr
B =

|Pr[Game1
A = 1]− Pr[Game2

A = 1]|.

Proof Given any adversary A in Game0 or Game1, we construct a following distin-

guisher B for the subgroup assumption between Gp1 and Gp1Gp2 :

• B (g1, X1X2 = gs1g
s
2, T ): // T is either gα1 or gα1 g

α
2 with α

$← ZN (Note that gα1
and gα2 are independently uniform in Gp1 and Gp2 , respectively.)

– (Initialize) Choose a, γ1, . . . , γB, δ1, δ2
$← ZN and set pp = (N, g =

g1, g
a
1 , e(g, g)

α = e(g1, T ), F,G, u1 = gγ1 , . . . , uB = gγB , w1 = gδ1 , w2 = gδ2)

and lk = (pp, γ1, . . . , γB). Invoke A on input pp.

– (Oracle simulation) Simulate Loosen-oracle honestly using lk. For Keygen-

oracle query as, do as follows:

∗ Choose t̃
$← ZN , compute K = TT at̃, L = T t̃, (Ki = T t̃γ·F (i))i∈as and

send das = (K,L, (Ki)i∈as) to A.
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As LR-oracle simulation, process challenge query f∗ as follows:

∗ Choose b
$← {0, 1} and let (ρ,A)← LSS(f∗). (A : l × n)

∗ Choose w
$← Zn

N with w1 = 1 and r̃j
$← ZN for j = 1 to l.

∗ Compute κ = K(e(X1X2, T )) and P = Eκ(Mb).

∗ Set C = X1X2 and compute Cj = (X1X2)
aAj ·w(X1X2)

−r̃jγ·F (ρ(j)), Dj =

(X1X2)
r̃j for j = 1 to l and Ej = D

δ1+G(f∗,P,C,(Cj ,Dj))δ2
j for j = 1 to l.

∗ Send cf∗ = (f∗, P, C, (Cj , Dj)j=1,...,l, (Ej)j=1,...,l) to A.

– (Output) Given the output b′ of A, output 1 if b = b′ or 0 otherwise.

Correctness of the simulation by B. The above simulated view of A inside B is

the same as the corresponding view of A in Game1 or Game2, except distributions of

the secret keys skas and the challenge ciphertext cf∗ .

When T = gα1 , the simulated secret keys skas are distributed as:

• K = gα1 (g
α
1 )

at̃ = gα1 g
at
1 . (Let t = αt̃, uniform in ZN .)

• L = (gα1 )
t̃ = gt1, Ki = (gα1 )

t̃γ·F (i) = (g
γ·F (i)
1 )t = H(i)t.

Thus, the distribution of skas is quite the same as normal secret keys in Game1. At

the same time the simulated cf∗ is distributed as:

• κ = K(e(gs1g
s
2, g

α
1 )) = K(e(g1, g1)

αs), P = Eκ(Mb).

• C = gs1g
s
2, Cj = (gs1g

s
2)

aAj ·w(gs1g
s
2)

−r̃jγ·F (ρ(j)) =

(ga1)
Aj ·v(g

γ·F (ρ(j))
1 )−rj (ga2)

Aj ·v(g
γ·F (ρ(j))
2 )−rj . (Let v = sw and rj = r̃js, in-

dependently uniform in ZN ).

• Dj = (gs1g
s
2)

r̃j = g
rj
1 g

rj
2 .

• Ej = (g
rj
1 g

rj
2 )δ1+G(f∗,P,C,(Cj ,Dj))δ2 = (g

δ1+G(f∗,P,C,(Cj ,Dj))δ2
1 )rj (g

δ1+G(f∗,P,C,(Cj ,Dj))δ2
2 )rj

= I(f∗, P, C, (Cj , Dj))
rjI ′(f∗, P, C, (Cj , Dj))

rj

Thus, the distribution of cf∗ is identical to the corresponding distribution of the semi-

functional ciphertext in Game1.

When T = gα1 g
α
2 , the simulated secret keys das are distributed as:

• K = gα1 g
α
2 (g

α
1 g

α
2 )

at̃ = gα1 g
at
1 · gα2 gat2 . (Let t = αt̃, uniform in ZN .)

• L = (gα1 g
α
2 )

t̃ = gt1g
t
2, Ki = (gα1 g

α
2 )

t̃γ·F (i) = H(i)tH ′(i)t.

Thus, the distribution of das is identical to the semi-functional secret keys in Game2.

The simulated challenge ciphertext cf∗ is distributed as:

• κ = K(e(gs1g
s
2, g

α
1 g

α
2 )) = K(e(g1, g1)

αse(g2, g2)
αs), P = Eκ(Mb).

• Other components of cf∗ are computed in the same way as the T = gα1 case using

the above P .

Thus, the distribution of cf∗ is identical to the corresponding distribution of more-semi-

functional ciphertexts in Game2.
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The advantage of B. By the above observation we see that

Advsubgr
B = |Pr[B(g1, X1X2, T ) = 1 | T = gα1 ]− Pr[B(g1, X1X2, T ) = 1 | T = gα1 g

α
2 ]|

= |Pr[b′ = b | Game1]− Pr[b′ = b | Game2]|
= |Pr[GameA1 = 1]− Pr[GameA2 = 1]|.

2

• Game3:

This game differs from Game2 only in the simulation of Loosen-oracle. The pro-

cedure Loosen2 in Game2 (that is the same as the original Loosen) is modified

to the following Loosen3.

– procedure Loosen3 (cf ,∆f ):

∗ If cf ̸= cf∗ , assert all of Dj components of cf are inside the subgroup

Gp1 . (If not, abort)

∗ Call Loosen2(cf ,∆f ) and return its output.

Claim 3 Under the subgroup assumption between Gp1 and Gp1Gp2, the outputs of

Game2 and Game3 are indistinguishable in the random oracle model w.r.t. the func-

tion G. More precisely, for any adversary A in the random oracle model w.r.t. the

function G, there exists a distinguisher B for the subgroup assumption that satisfies

Advsubgr
B ≥ 1

qloosenB
|Pr[Game2

A = 1] − Pr[Game3
A = 1]| − O(1/p2) where qloosen de-

notes an upper bound of the number of loosen queries issued by the adversary A.

To prove Claim 3, first we prepare an experiment Exp1:

• Exp1:

– Generate a group parameter: pp = (N = p1p2, G,GT , e)← GenG.

– Choose g1
$← Gp1 , gs1g

s′
2 , g

α
1 g

α′
2

$← Gp1Gp2 , a
$← ZN and invoke A on input

pp, g1, g
s
1g

s′
2 , g

α
1 g

α′
2 and A = ga1

– If A halts with output (C,D), return 1 if e(g1, D) = e(A,C) holds and at the

same time C is not in Gp1 , otherwise return 0.

Define Advexp1
A = Pr[A = 1 in Exp1]. We have

Lemma 1 For any PPT adversary A, there exists a PPT algorithm B for the subgroup

assumption that satisfies Advsubgr
B ≥ Advexp1

A −O(1/p2).

Proof Given any PPT adversary A in Exp1, we construct the following algorithm B

for the subgroup assumption:

• B (g1, T ) // T is either gs1 or gs1g
s′
2
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– Choose α, a
$← ZN and invoke A on input (g1, T, T

α, A = ga1).

– When A halts with output (C,D), do the following:

∗ Compute E = D/Ca.

∗ If e(g1, D) = e(A,C), then output 1 if e(E, T ) ̸= 1 and output 0 other-

wise.

∗ Otherwise output 0.

First note that if e(g1, D) = e(A,C) then E = D/Ca ∈ Gp2 . So, when T = gs1,

Pr[B = 1] = 0.

We consider the case of T = gs1g
s′
2 . In the case the simulation by B is perfect for

A. Since a mod p2 is not in the view of A, if C ̸∈ Gp1 , E would have a random Gp2

component and e(E, T ) would be equal to 1 only with a negligible probability O(1/p2).

Thus,

Pr[B = 1] = Pr[e(g1, D) = e(A,C) and e(E, T ) ̸= 1]

≥ Pr[e(g1, D) = e(A,C) and C ̸∈ Gp1 ]−O(1/p2)

≥ AdvA −O(1/p2).

Summing up,

AdvB = |Pr[B = 1 | T = gs1]− Pr[B = 1 | T = gs1g
s′
2 ]|

≥ AdvA −O(1/p2) 2

Proof (Claim 3) Define an event Outside be the event that an adversary A issues some

loosen query (cf ,∆f) such that cf ̸= cf∗ and its some Dj∗ component is outside from

Gp1 in the game Game2 (or Game3). It is clear that |Pr[Game2 = 1]− Pr[Game3 =

1]| ≤ Pr[Outside].

First, given any adversary A for the game Game2 (or Game3) in the random oracle

model w.r.t. the function G(·), we construct an adversary B for the experiment Exp1

as described below. B will succeed in Exp1 (almost) whenever its simulating A occurs

the Outside event.

• B (N, g1, X1X2 = gs1g
s
2, Y1Y2 = gα1 g

α
2 , A = gη1):

– (Initialize)

∗ Choose a, γ1, . . . , γB
$← ZN and set u1 = gγ11 , . . . , uB = gγB1 , γ =

(γ1, . . . , γB).

∗ Choose η1, η2
$← ZN , set w1 = gη1A,w2 = Aη2 and choose i∗

$← [qloose].

∗ Invoke A on input pp = (N, g1, g
a
1 , e(g1, g1)

α =

e(g1, Y1Y2), u1, . . . , uB, w1, w2) and simulate responses to oracle queries

from A as follows:
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– (KeyGen) When receiving a Keygen query for attribute set as, do as follows:

∗ Choose t̃
$← ZN , compute K = Y1Y2(Y1Y2)

at̃, L = (Y1Y2)
t̃, (Ki =

(Y1Y2)
t̃γ·F (i))i∈as and send das = (K,L, (Ki)i∈as) to A.

– (Challenge) When receiving a challenge query (f∗,M0,M1), respond as fol-

lows:

∗ Choose b
$← {0, 1} and let (ρ,A)← LSS(f∗). (A : l × n)

∗ Choose w
$← Zn

N with w1 = 1 and r̃j
$← ZN for j = 1 to l.

∗ Compute κ = K(e(X1X2, Y1Y2)) and P = Eκ(Mb).

∗ Set C = X1X2 and compute Cj = (X1X2)
aAj ·w(X1X2)

−r̃jγ·F (ρ(j)), Dj =

(X1X2)
r̃j for j = 1 to l.

∗ Define G(f∗, P, C, (Cj , Dj)j∈[l]) = −η−1
2 mod N and compute Ej = Dη1

j

for j = 1 to l.

∗ Send cf∗ = (f∗, P, C, (Cj , Dj)j∈[l], (Ej)j=1,...,l) to A.

– (Loosen) When receiving a loosen query (cf ,∆f), do as follows:

∗ If this loosen query is not the i∗-th loosen query, simulate the response

honestly using the trapdoor γ.

∗ If cf = (f, P, C, (Cj , Dj), (Ej)) coincides to the target ciphertext cf∗ ,

abort.

∗ Let f = or(f,∆f) and let (ρ,A)← LSS(f). (A : l × n)

∗ Assert that ♯Leaf(f) ≤ B and assert that

DH(g, I(f, P, C, (Cj , Dj)j), Dj , Ej) for j = 1 to l.

∗ Choose j∗
$← [B] and output (Dj∗ , (D

−η1
j∗ Ej∗)

1/(1+η2G(f,P,C,(Cj ,Dj)j)) and

halt.

Correctness of the simulation by B. It is direct to see the parameter pp given to A

is perfectly simulated. We check the distributions of responses of the simulated oracles.

The i∗ chosen by B in its initialization step indicates the guess of the first index

of loosen query (cf ,∆f) that occurs the Outside event, that is, in which some Dj∗

components of cf is outside from Gp1 . From now on, we concentrate on the case that

this guess i∗ as well as j∗ was right.

First we examine the response of Keygen oracle. The simulated secret key das is

distributed as:

• K = gα1 g
α
2 (g

α
1 g

α
2 )

at̃ = gα1 g
at
1 · gα2 gat2 . (Let t = αt̃)

• L = (gα1 g
α
2 )

t̃ = gt1g
t
2, Ki = (gα1 g

α
2 )

t̃γ·F (i) = H(i)tH ′(i)t.

Thus, the distribution of das is quite the same as semi-functional secret keys in Game2

or Game3.

Next we examine the response of challenge oracle. Components of the simulated c∗f
are distributed as:
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• κ = K(e(gs1g
s
2, g

α
1 g

α
2 )) = K(e(g1, g1)

αse(g2, g2)
αs)), P = Eκ(Mb)

• C = gs1g
s
2, Cj = (gs1g

s
2)

aAj ·w(gs1g
s
2)

−r̃jγ·F (ρ(j)) =

(g1)
aAj ·sw(g2)

aAj ·sw(g
γ·F (ρ(j))
1 )−r̃js(g

γ·F (ρ(j))
2 )−r̃js

= (g1)
aAj ·v(g2)

aAj ·v(g
γ·F (ρ(j))
1 )−rj (g

γ·F (ρ(j))
2 )−rj . (Let v = sw and rj = r̃js,

uniform in ZN .)

• Dj = (gs1g
s
2)

r̃j = g
rj
1 g

rj
2 .

• Ej = (g
rj
1 g

rj
2 )η1 . Its Gp1 component is (g

rj
1 )η1 = (gη11 )rj = (gη11 A1+G(cf∗\(Ej))η2)rj =

(w1w
G(cf∗\(Ej))
2 )rj

= I(G(cf∗ \ (Ej))
rj . (Here note that G(cf∗ \ (Ej)) was programmed to be −η−1

2 .)

For the Gp2 component, by definition of the function I ′(·), we have (g
rj
2 )η1 =

I ′(G(cf∗ \ (Ej))
rj . So, Ej = I(G(cf∗ \ (Ej))

rjI ′(G(cf∗ \ (Ej))
rj .

Thus, we know that the distribution of c∗f is identical to the more-semi-functional ci-

phertext in Game2 (or Game3).

For loosen oracle queries B’s simulation is trivially perfect since B uses the right

trapdoor γ, before reaching the i∗-th loosen query. Summing up, we know that B’s

simulation is perfect until the adversary A issues the i∗-th loosen query, in which the

submitted ciphertext cf by A is supposed to involve some non-trivial Gp2 element in the

Dj∗ component.

The advantage of B. At the i∗-the loosen query, by the DH check, we can suppose

(g, I(f, P, C, (Cj , Dj)), Dj , Ej) constitutes a DH-tuple. Here, I(f, P, C, (Cj , Dj)) =

w1w
G(cf\(Ej))
2 = gη11 A1+η2G(cf\(Ej)). Hence, (g, gη11 A1+η2G(cf\(Ej)), Dj , Ej) is a DH-tuple.

Then, (g, A, Dj , (D
−η1
j Ej)

1/(1+η2G(cf\(Ej)))) also constitutes a DH-tuple and the output

(Dj , (D
−η1
j Ej)

1/(1+η2G(cf\(Ej)))) by B means its success in the Exp1.

Here we note that by cf ̸= cf∗ , we have cf \ (Ej) ̸= cf∗ \ (E∗
j ). (If cf \ (Ej) = cf∗ \ (E∗

j )

and cf ̸= cf∗ , then Ej/E
∗
j becomes a non-trivial Gp2 element and breaks the subgroup

assumption, even without making a detour via Exp1.) Then G(cf \ (Ej)) ̸= G(cf∗ \
(E∗

j )) = −η
−1
2 (except a negligible probability) and the division-by-zero error does not

occur in the above.

After all, Advexp1
B ≥ 1

qloosenB
Pr[Outside] − O(1/p2) ≥ 1

qloosenB
|Pr[Game2

A = 1] −
Pr[Game3

A = 1]| − O(1/p2). By Lemma 1 there exists a PPT algorithm B′ for the

subgroup assumption such that Advsubgr
B′ ≥ Advexp1

B − O(1/p2). Hence, Advsubgr
B′ ≥

1
qloosenB

|Pr[Game2
A = 1]− Pr[Game3

A = 1]| −O(1/p2) 2

• Game4:

This game differs fromGame3 only in the simulation of LR-oracle. The LR-oracle

procedure LR3 in Game3 is changed to the following new LR4.

– procedure LR4 (f∗):
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∗ Only difference from LR3 is in the method of computing κ:

Choose a fresh x
$← ZN and compute κ = K(e(g, g)αse(g2, g2)

x).

Claim 4 Under the decisional parallel BDHE assumption on G, the outputs of Game3

and Game4 are indistinguishable for all selective adversaries. More precisely, for any

selective adversary A that issues queries around decryption policies with matrix of size

at most q, there exists a distinguisher B for the decisional q-parallel BDHE assumption

on G that satisfies Advq−dpBDHE
B = |Pr[Game2

A = 1]− Pr[Game3
A = 1]|.

Proof Given any selective adversary A that issues queries around decryption policies

(M,ρ) with size l×n both of which are at most q, we construct a following distinguisher

B for the decisional q-parallel BDHE assumption on G = (N = p1p2, G = Gp1Gp2 , GT =

GT,p1GT,p2 , e2). Let

y = (p1, g1, p2, g2, g
s
2, g

a
2 , . . . , g

aq

2 , ga
q+2

2 , . . . , ga
2q

2 ,

(g
sbj
2 , g

a/bj
2 , . . . , g

aq/bj
2 , g

aq+2/bj
2 , . . . , g

a2q/bj
2 )j∈[q],

(g
asbk/bj
2 , . . . , g

aqsbk/bj
2 )j,k∈[q],j ̸=k),

be an instance of q-parallel BDHE problem on G (Section 2.1.2).

• B (y, T ): // T is either e(g2, g2)
aq+1s or e(g2, g2)

x.

– (Initialize) Invoke a copy of adversary A and do as follows:

∗ Receive a target policy f∗(=: ∆f0) and its loosening ’s ∆f1,. . . ,∆fτ

from adversary A and then let (M∗, ρ∗) ← (M∗
0 |M∗

1 | · · · |M∗
τ , ρ

∗), where

(M∗
i , ρ

∗) ← LSS(∆fi) (i = 0, . . . , τ) and M∗
i |M∗

j denotes the matrix

concatenating rows of two matrices M∗
i and M∗

j . (This corresponds to

taking or-operation or(∆fi,∆fj) of the two formulas ∆fi and ∆fj . See

for example [17] for details of the conversion.) Let the size of M∗ be l×n.
Set the initial challenge policy f∗ = false.

∗ Choose α′ $← Zp2 and compute e(g2, g2)
α2 = e(ga2 , g

aq
2 )e(g2, g2)

α′
. (We set

α2 = α′ + aq+1 that is uniform in Zp2 .)

∗ For all attributes x = x1, . . . , xB that appear in (M∗, ρ∗), choose zx
$←

Zp2 and compute H ′
x = gzx2

∏
ρ∗(i)=x

∏
j∈[n] g

ajM∗
i,j/bi

2 .

∗ Choose v1, . . . , vB ∈ Gp2 randomly so that H ′(x) = v
F1(x)
1 · · · vFB(x)

B = H ′
x

for x = x1, . . . , xB. That is, set a B × B binary invertible matrix

Ω = (Ωij = Fj(xi)) and set (v1, . . . , vB)
T = Ω−1 · (H ′

x1
, . . . , H ′

xB
)T .

(Here, for matrix M = (mij) and vector (gc1 , . . . , gcB )T , we set M ·
(gc1 , . . . , gcB )T

def
= (g

∑
i m1ici , . . . , g

∑
i mBici)T .

∗ For Gp1 parameters, do honest simulation. That is, choose

α1, a1, γ1, . . . , γB
$← Zp1 and compute u1 = gγ11 , . . . , uB = gγBB .
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∗ Choose δ1, δ2
$← ZN and compute w1 = gδ11 , w2 = gδ21 . Choose β

$← {0, 1}.
∗ Return pp = (N, g1, g

a1
1 , e(g1, g1)

α1 , u1, . . . , uB, w1, w2) to A.

– (Challenge or Loosen for cf∗) When receiving the challenge query (∆f0 =

f∗,M0,M1) or the i-th loosen query ∆fi against the current challenge cipher-

text cf∗ = (f∗, P, C, (Cj , Dj)j , (Ej)j) (i ∈ [i..τ ]), do as follows:

∗ Assert that the i-th query ∆fi coincides to the one received in advance

before giving pp to A.

∗ Update f∗ = OR(f∗,∆fi). Assert(♯Leaf(f) ≤ B).

∗ In the case of loosen query, Assert(DH(g, I(f∗, P, C, (Cj , Dj)j), Dj , Ej))

(j = 1, . . . , l).

∗ Set M = M∗
0 |M∗

1 | · · · |M∗
i of size l × n.

∗ Choose v = (s1, y2, . . . , yn)
$← Zn

p1 and (y′2, . . . , y
′
n)

$← Zn−1
p2 , and do the

following:

· Compute κ = K(e(g1, g1)
α1s1Te(gs2, g

α′
2 )) and P = Eκ(Mβ).

· Set C = gs11 gs2. Choose r11, . . . , r1l
$← Zp1 , r

′
1, . . . , r

′
l

$← Zp2 . For j = 1

to l, set Cj = C
(1)
j C

(2)
j where C

(1)
j = g

s1Mj,1+y2Mj,2+···+ynMj,n

1 H(x)−r1j

and

C
(2)
j = (ga2)

y′2Mj,2+···+y′nMj,nH ′(x)−r′j (g
sbj
2 )−zx

∏
ρ(k)=x,k ̸=j

∏
i∈[n](g

saibj/bk)−Mk,i

with x = ρ(j).

· Compute Dj = g
r1j
1 g

r′j
2 g

sbj
2 (j ∈ [l]) and Ej = D

δ1+G(f∗,P,C,(Cj ,Dj))δ2
j

(j ∈ [l])

∗ Return cf∗ = (f∗, P, C, (Cj , Dj)j , (Ej)j).

– (KeyGen) When receiving a Keygen query for attribute set as, do as follows:

∗ Asserting that the received as does not satisfy the current challenge policy

f∗, find w = (w1, . . . , wn) such that w1 = −1, w ·Mi = 0 (i ∈ ρ−1(as)).

∗ Choose t1
$← Zp1 and r

$← Zp2 .

∗ Compute K = gα1
1 ga1t1 · gα′

2 gar2
∏

i∈[2..n](g
aq+2−i

2 )wi .

∗ Compute L(1) = gt11 and L(2) = gr2
∏

i∈[n](g
aq+1−i

2 )wi .

∗ For all attributes x = x1, . . . , xB that appear in the challenge policy

(M∗, ρ∗),

· Compute ξx = (L(2))zx
∏

ρ(i)=x

∏
j∈[n]((g

aj/bi
2 )r

∏
k∈[n],k ̸=j(g

aj+q+1−k/bi
2 )wk)Mi,j

∗ For each y ∈ as, do the following:

· Set K(1)
y = H(y)t1 and K

(2)
y = (Ω−1 · (ξx)x∈{x1,...,xB})

F (y).

∗ Return K,L = L(1)L(2), (Ky = K
(1)
y K

(2)
y )y∈as.

– (Loosen for cf ̸= cf∗) When receiving a loosen query (cf ,∆f) with cf ̸=
cf∗ , simulate the loosen-oracle behavior using the trapdoor γ = (γ1, . . . , γB)

generated in the initialization step, following the instructions of honest loosen

procedure.
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– (Output) Given the output β′ of A, output 1 if β = β′ or 0 otherwise.

Correctness of the simulation. It is direct to see the parameter pp given to A is

perfectly simulated. We check the distributions of responses of the simulated oracles.

First we examine the response of the challenge oracle. When T = e(g2, g2)
x is a

random element of Gp2 , the simulated κ = K(e(g1, g1)
α1s1e(g2, g2)

x+sα′
) has the same

distribution as in Game3. When T = e(g2, g2)
aq+1s, the κ is distributed as:

• κ = K(e(g1, g1)
α1s1e(g2, g2)

aq+1se(gs2, g
α′
2 )) = K(e(g1, g1)

α1s1e(g2, g2)
α2s). (We set

α2 = α′ + aq+1 that is uniform in Zp2 .)

This is identical to κ in Game2. The simulated ciphertext cf∗ is distributed as:

• C = gs11 gs2, C
(1)
j = g

s1Mj,1+y2Mj,2+···+ynMj,n

1 H(x)−r1j

• C
(2)
j = (ga2)

y′2Mj,2+···+y′nMj,nH ′(x)−r′j (g
sbj
2 )−zx

∏
ρ(k)=x,k ̸=j

∏
i∈[n](g

saibj/bk)−Mk,i

= (ga2)
y′2Mj,2+···+y′nMj,n ·

∏
i∈[n](g

sai
2 )Mj,i ·H ′(x)−r′j (g

sbj
2 )−zx ·

∏
i∈[n](g

sai
2 )−Mj,i ·∏

ρ(k)=x,k ̸=j

∏
i∈[n](g

saibj/bk)−Mk,i

= (ga2)
y′2Mj,2+···+y′nMj,n ·

∏
i∈[n](g

sai
2 )Mj,i · H ′(x)−r′j{gzx2 ·

∏
i∈[n](g

ai/bj
2 )Mj,i ·∏

ρ(k)=x,k ̸=j

∏
i∈[n](g

ai/bk)Mk,i}−sbj = (ga2)
y′2Mj,2+···+y′nMj,n ·

∏
i∈[n](g

saj
2 )Mj,i ·

H ′(x)−r′j{gzx2 ·
∏

i∈[n]
∏

ρ(k)=x(g
aiMk,i/bk)}−sbj

= (ga2)
sMj,1+(as+y′2)Mj,2+···+(an−1s+y′n)Mj,nH ′(x)−r′j−sbj

= (ga2)
sMj,1+y2Mj,2+···+ynMj,nH ′(x)−rj (We set y2 = as + y′2, . . . , yn = an−1s + y′n

and rj = r′j + sbj , that are all independently uniform in Zp2 .)

• Dj = g
r1j
1 g

r′j
2 g

sbj
2 = g

r1j
1 g

rj
2

• Ej = D
δ1+G(f,P,C,(Cj ,Dj))δ2
j = I(f, P, C, (Cj , Dj))

r1jI ′(f, P, C, (Cj , Dj))
rj

Thus, cf∗ is distributed in the same way as Game2 or Game3.

Next we examine the response of the Keygen oracle. The simulated secret key das is

distributed as:

• K = gα1
1 ga1t1 · gα′

2 gar2
∏

i∈[2..n](g
aq+2−i

2 )wi

= gα1
1 ga1t1 ·gα2

2 g−aq+1

2 ·gar2
∏

i∈[2..n](g
aq+2−i

2 )wi = gα1
1 ga1t1 ·gα2

2 gar2
∏

i∈[1..n](g
aq+2−i

2 )wi

= gα1
1 ga1t1 · gα2

2 gat2 . (We set t = r +
∑

i∈[n] a
q+1−iwi, uniform in Zp2 .)

• L(1) = gt11 , L(2) = gr2
∏

i∈[n](g
aq+1−i

2 )wi = gt2.

• ξx = (L(2))zx
∏

ρ(i)=x

∏
j∈[n]((g

aj/bi
2 )r

∏
k∈[n],k ̸=j(g

aj+q+1−k/bi
2 )wk)Mi,j

= (L(2))zx
∏

ρ(i)=x

∏
j∈[n]((g

aj/bi
2 )r

∏
k∈[n](g

aj+q+1−k/bi
2 )wk)Mi,j

(Note that
∏

j∈[n] g
aq+1wjMi,j/bi
2 = g

aq+1
∑

j∈[n] wjMi,j/bi
2 = 1)

= (L(2))zx(
∏

ρ(i)=x

∏
j∈[n] g

ajMi,j/bi
2 )r+

∑
k∈[n] wka

q+1−k

=

gtzx2 (
∏

ρ(i)=x

∏
j∈[n] g

ajMi,j/bi
2 )t

= (H ′
x)

t.
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• K
(1)
y = H(y)t1 ,K

(2)
y = (Ω−1·(ξx)x∈{x1,...,xB})

F (y) = (Ω−1·((H ′
x)

t)x∈{x1,...,xB})
F (y) =

H(y)t.

Finally we examine the response of the loosen oracle for query (∆f, cf (̸= cf∗)). By

modification of the rule in Game3, we can suppose Dj components of the submitted

ciphertext cf is in Gp1 . So the faked trapdoor γ, that is distributed in the right way

only in Zp1 components, suffices to loosen the cf (with respect to ∆f).

The advantage. By the above observation we see that

Advq−dpBDH
B = |Pr[B(y, T ) = 1 | T = e(g2, g2)

aq+1s]− Pr[B(y, T ) = 1 | T = e(g2, g2)
x]|

= |Pr[b′ = b | Game3]− Pr[b′ = b | Game4]|
= |Pr[GameA3 = 1]− Pr[GameA4 = 1]|.

2

In the final game Game4, since the challenge ciphertext c∗f is informationally inde-

pendent from κ that encrypts the payload P = Eκ(Mb), it is easy to see that

|Pr[GameA4 = 1]− 1/2| ≤ Advcpa1
SKE,B5

(1)

for some one-time CPA adversary B5 against SKE.

Putting Claim 1, Claim 2, Claim 3, Claim 4 and Equation (1) together, we finish the

proof of Theorem 1 2

Theorem 2 Under the decisional BDH assumption on G and the assumption that the

symmetric encryption SKE = (E,D) is one-time CPA-secure, the proposed fABE scheme

is IND-LSK. More precisely, for any PPT adversary A against the scheme in the IND-

LSK game in the standard model, there exists an algorithm B1 for the decisional BDH

assumption on G and a one-time CPA adversary B2 against SKE that satisfies

Advind−lsk
A,fABE ≤ AdvdBDH

B1
+Advcpa1

SKE,B2
.

Proof For ease of presentation, here we assume the used symmetric encryption SKE is

perfectly one-time CPA-secure. Given any PPT adversary A in the IND-LSK game, we

construct the following algorithm B for the decisional BDH assumption on G:

• B (g, gs, gα, gβ, T ) // T is either e(g, g)sαβ or random in GT,p1 .

– (Initialize) Choose a, γ1, . . . , γB, δ1, δ2
$← ZN , and set pp =

(N, g, ga, e(gα, gβ), u1 = gγ1 , . . . , uB = gγB , w1 = gδ1 , w2 = gδ2), and

invoke a copy of A on input pp.

– (Oracle simulation) For LR-oracle simulation, do as follows.

∗ Given challenge query (f∗,M0,M1), choose b
$← {0, 1} and let (ρ,A) ←

LSS(f∗). (A : l × n)
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∗ Choose w
$← Zn

N with w1 = 1 and r̃j
$← ZN for j = 1 to l.

∗ Compute κ = K(T ) and P = Eκ(Mb).

∗ Set C = gs and compute Cj = (gs)aAj ·w(gs)−r̃jγ·F (ρ(j)), Dj = (gs)r̃j for

j = 1 to l and Ej = D
δ1+G(f∗,P,C,(Cj ,Dj))δ2
j for j = 1 to l.

∗ Return c∗f = (f∗, P, C, (Cj , Dj)j=1,...,l, (Ej)j=1,...,l) to A.

– (Output) Given the output b′ of A, output 1 if b = b′ or 0 otherwise.

It is direct to see that the simulation by B is perfect for the invoked adversary A when

T = e(g, g)sαβ , and that the simulated view of A is independent from the choice of b

when T is random in GT,p1 . So, we have

AdvdBDH
B = |Pr[B(g, gs, gα, gβ, T ) = 1 | T = e(g, g)sαβ ]− Pr[B(g, gs, gα, gβ, T ) = 1 | T $← GT,p1 ]|

= |Pr[b′ = b in Gameind−lsk
A,fABE ]− 1/2|

= Advind−lsk
A,fABE 2

5 Conclusion

We gave new security definition for flexible attribute-based encryption. Our new def-

inition of IND-LSO is stronger and more natural in the sense that it allows adversaries

to issue the challenge ciphertext to the loosening oracles. Second, we constructed a con-

crete construction of flexible attribute-based encryption using composite-order pairing

map. We proved its security (in our new definition) in the random oracle model against

selective adversaries, employing the dual encryption method.
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